Finite element discretization of non-linear diffusion equations with thermal fluctuations.
نویسندگان
چکیده
We present a finite element discretization of a non-linear diffusion equation used in the field of critical phenomena and, more recently, in the context of dynamic density functional theory. The discretized equation preserves the structure of the continuum equation. Specifically, it conserves the total number of particles and fulfills an H-theorem as the original partial differential equation. The discretization proposed suggests a particular definition of the discrete hydrodynamic variables in microscopic terms. These variables are then used to obtain, with the theory of coarse-graining, their dynamic equations for both averages and fluctuations. The hydrodynamic variables defined in this way lead to microscopically derived hydrodynamic equations that have a natural interpretation in terms of discretization of continuum equations. Also, the theory of coarse-graining allows to discuss the introduction of thermal fluctuations in a physically sensible way. The methodology proposed for the introduction of thermal fluctuations in finite element methods is general and valid for both regular and irregular grids in arbitrary dimensions. We focus here on simulations of the Ginzburg-Landau free energy functional using both regular and irregular 1D grids. Convergence of the numerical results is obtained for the static and dynamic structure factors as the resolution of the grid is increased.
منابع مشابه
VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملL2-Stability Independent of Diffusion for a Finite Element-Finite Volume Discretization of a Linear Convection-Diffusion Equation
We consider a time-dependent and a steady linear convection-diffusion equation. These equations are approximately solved by a combined finite element – finite volume method: the diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the unsteady case, the implicit Euler method is u...
متن کاملNavier-Stokes Equations in Rotation Form: A Robust Multigrid Solver for the Velocity Problem
The topic of this paper is motivated by the Navier–Stokes equations in rotation form. Linearization and application of an implicit time stepping scheme results in a linear stationary problem of Oseen type. In well-known solution techniques for this problem such as the Uzawa (or Schur complement) method, a subproblem consisting of a coupled nonsymmetric system of linear equations of diffusion-re...
متن کاملNon-linear Thermo-mechanical Bending Behavior of Thin and Moderately Thick Functionally Graded Sector Plates Using Dynamic Relaxation Method
In this study, nonlinear bending of solid and annular functionally graded (FG) sector plates subjected to transverse mechanical loading and thermal gradient along the thickness direction is investigated. Material properties are varied continuously along the plate thickness according to power-law distribution of the volume fraction of the constituents. According to von-Karman relation for large ...
متن کاملTwo-grid Method for Characteristics Finite Volume Element of Nonlinear Convection-dominated Diffusion Equations
A characteristics finite volume element discretization technique based on two subspaces is presented for a nonlinear convection-dominated diffusion equations. The solution of a nonlinear system on the fine space is composed of solving one small (nonlinear) system on the coarse space and a linear system on the fine space. Error estimates are derived and numerical experiments are performed to val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 142 9 شماره
صفحات -
تاریخ انتشار 2015